255 research outputs found

    On Reliability of Underwater Magnetic Induction Communications with Tri-Axis Coils

    Full text link
    Underwater magnetic induction communications (UWMICs) provide a low-power and high-throughput solution for autonomous underwater vehicles (AUVs), which are envisioned to explore and monitor the underwater environment. UWMIC with tri-axis coils increases the reliability of the wireless channel by exploring the coil orientation diversity. However, the UWMIC channel is different from typical fading channels and the mutual inductance information (MII) is not always available. It is not clear the performance of the tri-axis coil MIMO without MII. Also, its performances with multiple users have not been investigated. In this paper, we analyze the reliability and multiplexing gain of UWMICs with tri-axis coils by using coil selection. We optimally select the transmit and receive coils to reduce the computation complexity and power consumption and explore the diversity for multiple users. We find that without using all the coils and MII, we can still achieve reliability. Also, the multiplexing gain of UWMIC without MII is 5dB smaller than typical terrestrial fading channels. The results of this paper provide a more power-efficient way to use UWMICs with tri-axis coils

    Mobility-Aware Computation Offloading for Swarm Robotics using Deep Reinforcement Learning

    Full text link
    Swarm robotics is envisioned to automate a large number of dirty, dangerous, and dull tasks. Robots have limited energy, computation capability, and communication resources. Therefore, current swarm robotics have a small number of robots, which can only provide limited spatio-temporal information. In this paper, we propose to leverage the mobile edge computing to alleviate the computation burden. We develop an effective solution based on a mobility-aware deep reinforcement learning model at the edge server side for computing scheduling and resource. Our results show that the proposed approach can meet delay requirements and guarantee computation precision by using minimum robot energy

    Semi-supervised MIMO Detection Using Cycle-consistent Generative Adversarial Network

    Full text link
    In this paper, a new semi-supervised deep multiple-input multiple-output (MIMO) detection approach using a cycle-consistent generative adversarial network (CycleGAN) is proposed for communication systems without any prior knowledge of underlying channel distributions. Specifically, we propose the CycleGAN detector by constructing a bidirectional loop of two modified least squares generative adversarial networks (LS-GAN). The forward LS-GAN learns to model the transmission process, while the backward LS-GAN learns to detect the received signals. By optimizing the cycle-consistency of the transmitted and received signals through this loop, the proposed method is trained online and semi-supervisedly using both the pilots and the received payload data. As such, the demand on labelled training dataset is considerably controlled, and thus the overhead is effectively reduced. Numerical results show that the proposed CycleGAN detector achieves better performance in terms of both bit error-rate (BER) and achievable rate than existing semi-blind deep learning (DL) detection methods as well as conventional linear detectors, especially when considering signal distortion due to the nonlinearity of power amplifiers (PA) at the transmitter

    Mulsemedia Communication Research Challenges for Metaverse in 6G Wireless Systems

    Full text link
    Although humans have five basic senses, sight, hearing, touch, smell, and taste, most multimedia systems in current systems only capture two of them, namely, sight and hearing. With the development of the metaverse and related technologies, there is a growing need for a more immersive media format that leverages all human senses. Multisensory media(Mulsemedia) that can stimulate multiple senses will play a critical role in the near future. This paper provides an overview of the history, background, use cases, existing research, devices, and standards of mulsemedia. Emerging mulsemedia technologies such as Extended Reality (XR) and Holographic-Type Communication (HTC) are introduced. Additionally, the challenges in mulsemedia research from the perspective of wireless communication and networking are discussed. The potential of 6G wireless systems to address these challenges is highlighted, and several research directions that can advance mulsemedia communications are identified
    • …
    corecore